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BOOLEAN MATRICES AND GRAPH THEORY 

Introduction. A net is a set of points "between any tvo of which may be a 

connecting line. We will consider directed nets, in which the connecting lines 

have a direction: if the line v12 connecting points pj and p2 is directed from 

Pj toward p2, then pj is called the origin of the line, and p2 is called the 

insertion of the line. In particular, we will restrict ourselves to nets in 

vhich there cannot be two or more lines in the same direction between the same 

pair of points, and in which a line can only connect two distinct points: such 

a net is called a directed graph. Figures  1 a and  1 b are not valid directed 

graphs; Fig.  1 c is a valid directed graph. 

The study of directed graphs has many applications in information and com- 

puter science. The trees of the previous section are directed graphs; the skele- 

tons of flow charts are graphs; the state diagrams to be studied in Part V below 

are related to directed graphs; and so forth. Information flow in communicaticn 

network can be analyzed in terms of directed graphs, as can social-structures and 

many mathematical relationships. In this short section we can do no more than 

present a bare introduction to this subject; nevertheless, its importance in infor- 

mation and computer science necessitates Hi  inclusion, however briefly, in this 

survey. 

The Incidence Matrix G. Associated with a directed graph is a Boolean 

matrix G, called the incidence matrix, in which g.,  = 1 if there is a line in 

the graph with origin p. and insertion p , and g.. = 0 otherwise. Thus for the 
i 0 * J 

directed graph of Fig.  1 c we have 

G ~ 

0  12  3 

0 fo 0 0 
>> 

0 

1 0 0 1 0 
2 0 1 0 0 
3 0 1 0 0 

J 
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Mote that if wc renumbered the points as in Fig. 2   > then a different matrix 

would result, even though the graph would have the came "basic structure. For 

the numbering of Fig. 2 we have 

2 

0 12  3 

0 0 0 1 
10 0 1 
0  0  0  0 
.0100 

If we wanted to show that the two matrices indeed represented the same basic 

graph structure, then we would have to demonstrate that there is a renumbering, 

or permutation, of the rows and columns of G which would make it identical to 

G'. Recall that when a column-unitary matrix multiplies a matrix on its left, 

the result is to permute the columns of that matrix. Similarly when a row- 

unitary matrix (with a single unit in each row) multiplies a matrix on its right, 

it .permutes the rows of that matrix. Since we must permute* both the columns 

and rows of G to get G, we must multiply G both on the left and right. To get 

the same permutation of ro»rs and columns, the row- and column-unitary matrices 

must be transposes of each other. Thus if P is the desired permutation, then 

P  $ 0 g P  =  G' (1) 

For our case we see from Fig. 2  that 
0  1  2 

P = 

/', 

whence from Eq.    (l)    we find 

^0   0   0  1*^ 
0  0  10 
10  0  0 

yo l o o 
which is G', as desired 

/o 000 
0  0  10 

\ 

/o 0 1 oN 

0 0  0 1 
...   „   . 0 10 0 
10  0)        (^1 0  o oj 

0  10  1 
c*> 

\ 

0  0  0 1 
10  0 1 
0   0  0 0 
0  10 0 

r\ 

•A true permutation matrix is a (row or column) unitary matrix with a single 

unit in each row and each column. If point i -> point j, then P*. . -  1 in P. 
j-j 
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For our case of directed graphs (i.e. where g.. =0), it can be shown that, 

in general, given two incidence matrices G and G", all permutations P, if any 

exist at all, that satisfy Eq. (1) can he generated by the following process: 

Step 1. For each row j of G (written as a column) and each row i of G' 

(written as a row) formt 

fjth 
, 0  row of G 

83    -   j written as a Q 
\^       column 

ith row of G' 
written as a 

row 

N 

j 

A.. > 
6 J2 

e   (en gi2 ~'*h] 

W 
Step 2. Form every product 

t = S * 
k 

2« 
S 2 

-Jft, 

where the a are chosen, in some order, from 1, 2. .... J, so that a 4  a n        ' '     » »   > >       n  m 

(i.e. no two alphas are the same in the same product). Betain only those T. 

that do not have an all-zero column or row. 

Step 3. For each such product T, form the permutation matrix P with 

elements E-/"^. -• 1, zeros otherwise (i.e. with a unit element corresponding 
i, a± 

y 

to each term in the product). If 

k   k 

then P = P A is a permutation that satisfies Eq. (l). 

Tlf A is a matrix with a single column of elements a., and B is a matrix with 
l 

a single row of elements h , then the elements of the 0 (theta) product of 
u 

A and B, namely C = A 0 B are 

c. , = a.b + a -D*. 
10   i i        i. J 
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As an example, consider C and G' as given ahove, namely 

G = 

4J 

0 0   0   0 
0 0  10 
0 10   1 
0 10   0 

0  110^ 

G' = C  C  '.   0 
10  0  0 

^0 0  0  0, 

Then for the S     matrices we have 

S 00 - 
0 0, 

l' 1 
1 1 

0 0 

«01   ^ 
K1 *A Si l i ß 1111 

i XX i 
s02 = o\yi S03 m 1111 

1111 

tl °\. Jr 1  l\ [l   )   1   lj 

0  1   1   1^- 
Olli 
10  0  0 
piii; 

s20 = 
(l  I  0 l] 0  111 

s21 .10  0  1   11 s2? = 10  0  0 
110   1 
[0010 

1 0  111 

I ^ o o oj 

110 0 1 
0 110 
10 0 1 
10  0  1 

^ 

•31   = 

i i o i\ 
0  0  10 
110  1 
110  1 

<32 .f: 0 111 
0 0 0 

0 111 
0  111 

^ 

Note that S00, S01, S02, S13, S23, and S33 were crossed off because they each 

had a zero column. For the first two rows of matrices, we can form the products 

S03.S10 S03.S11 B 

fi i 0 ri 
l i 0 i 
0 0 1 0 

b 1 0 1 

s03.s12 = 
fo 1 1 

■> 

0 1 1 1 
1 0 0 0 

Lo 1 1 1 

Ac«-/' 4J Including the third of S u matrices, only 

S03#S10#B22 
To o o r\ (6 i o iS 
' 1 o o o, s03.sn.s2Z =;1 ° ° °i 

'o 0 1 o' 

0  0  f) 

and S03.S12.S21 

S°3.S,2.S20 

i 
10 0 0; 

fo 0 
Jo 1 
ll o o o\ 
(^0 1 i oj 

need he retained as having no all-zero columns (or rows), 
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a*J Finally, including the fourth row of S  matrices, we find 

(o 0 0 l) 
»<S31  _ JO 0 1 0!  = 

/1 0 0 o! 
\ja l o o) 

s03.s12.s20. = T, 

[Y.*- 

as the product with no all-7.ero columns    or rows, 
A 

Thus 

and certainly P. -*• T . Hence 

0 
0 1 

0 
2   3 
o i\ 

pk = 1 0 0 1   0 
2 1 c 0  0 
3 1° 1 o oj 

1 

f 
0 0 1  o^ 

'•** 
n 0 

0 
0 
1 

01 
0  0 

» 0 o oj 

is the desired permutation. 

The Reachability Matrix R. A path from P\ to V   is a collection of points 

f.y  P, , f  , P , ...P ,P\ and the lines v., , v, , v , ..., v ,, where the Ai*    k' n* m'    r* j ik' kn' nm'   • rj' 

insertion of each line is the origin of the next, except for the last. If such 

a path from P*. to ?' actually exists in a graph, then point ,P is said to he 

reachable from point P". in the graph. For instance, in Fig. 3  we see that P3 

is reachable from V\, but P* is not reachable from any other point on the graph. 

The reachability matrix R of a graph has elements r. = 1 if,P, is reachable from 

J?., and zero otherwise. Noto that every point is trivially reachable from itself, 

and hence r.. = 1 for all points P\ . For Fig. 3 , the reachability matrix is 

0 
0   12   3  1, 

r\   1   1   1   Is] 0    1 
0 1 7 3 '. 
0   1   0   1   A 

R = 
1 
2 

0   1111 
0   0   111 with G -' 

1     ' 
2 

0 0 10 0 
0   0   0   0   1 

3 0   0   0   10 3 0   0   0   0   0 
«, 0   0   0   11 1, 0   0   0   10 

clearly G -> R, for if g.. = 1, then P is reachable from P. and hence r.. = 1. 

For any point P.>we can determine the set of points that can be reached from p* 
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by inspecting the i^ ' row of R: the pet corresponds to those columns with units 

in that row. Similarly we can find the set of points from which if.  is reachable 

by inspecting the i_     cclumn of R: the set corresponds to those rows with units 

in that column. 

The matrix R can he obtained from the matrix G of a graph as follows: 

Note that G gives the "one step" reachability of the graph. If we form 

G  ® G = G2 

we get the "two step" reachability of the graph, i.e. all those points that can 

be reached from another point in two lines. For instance, for Fig. 5 , 

0 12 3<. 
0 f0 1   0 1  f 
1 I 0 0 1 0 C 

G =    2    1 0 0  0 0  1 
3    ! 0 0  0 0  0 
«.    \0 0  0 1   0 

0  1   2  3  >r 
St 

and G   (35>   G =    2 
3 

0 0 110 
0 0 0 0 1 
0 0 0 10 
0 0 0  0  0 
0 0 0  0  0 

Similarly, a "three step" reachable graph can be constructed by forming 

G ® G $>   G = G3 

For our illustration, this becomes 

(G & G) & G = 

0 0 0 0 1 
0 0 0 10 
0 0 0 0 0 
0 0 0 0 0 
J) 0 0 0 QJ 

This process can be continued to find an "n step" reachable matrix G . Now the 

reachability matrix R includes all reachable steps, and the unit diagonal 

matrix I as veil.    That is, 

R = I + G + G2 + G2 + .. + G1 

where I ha? the elements 6.. = 1, 6.< = 0 for i ^ j. Therefore to construct 
11      ij 

the reachability matrix R from the incidence matrix G, (logically) add to I the 

- 6 

I ; 



matrix G and its successively higher powers until no new units can be included 

in R. For our case we have 

R=I+G+G2+G3= 

r\  1  1  1   0 
0)111 
0 0 111 
0 0 0 10 
0 0 0 1   lj 

Finally, note that since I   $   A   =   A   (3p   i/we have  \~-J C,*-$ -UA 

(I + G)2 = (1 + G) Öf' (I + G) = I + G + G2 

or in general 

(I + G)n = I + G + G2 + ... + Gn 

Then, if no new units can be included after the n  step, 

R = (1 + G)n 

For our example, we have 

(I+G) - 

110 11 
0  110  0. 
0 0 1 oil    <I+G)   * 
0  0   0  10 

V0  0 0 1  1 

'I i 11 r* 
0 110  1 
0 0   111 
0 0  0  10 
0 0  0  11 

(I+G)3 - 

fl 1 1 1 l) 
0 1111 
0 0  111 
0 0   0  10 

1,0 0  0  1   1 

whence R = (i+G)3 

Connectedness and Components. A directed graph is called strong, or 

strongly connected, when every point is reachable from every other point of the 

graph. A directed graph is weakly connected when for every two points, at least 

one point is reachable from the other (but not necessarily the reverse). A 

directed graph is unconnected when there exist at least two points neither of 

which is reachable from the other4 but there is at least a sequence of lines5 

disregarfling dircction, between every two points. A directed graph is disconnected 

when it is not connected in any of the just-mentioned ways. Figure 4  illustrates 

the types of connectedness of graphs. 
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If a graph ir. r-trongly connected, then P*. must be reachable from^, and 

y   must be reachable fron P*., for every pair of points f.  and P" of the graph. 

Hence, if J represents the matrix all of vhose elements are units, then 

R = J 

if and only if the graph is strongly connected. If the graph is weakly connected, 

then P. must be reachable from P. or P. must be reachable from P.. Hence if R 
l 3 —     i l 

is the transpose of the reachability matrix R then 

R + R* = J 

if and only if the graph is veakly connected. Of course strong connectedness 

implies weak connectedness. For our illustrations of Fig. 4 , we have: 

(a) 
0 

R = j 
2 

0 1 2 
r\   1 1> 
111 
1 1 1 

(b) 

(c) 

(d) 

fl 1 0] 
1 1 0 

u \ 1 
• 

R*. 

t  (110 
H*- 0 1 0 

0 1 1 

t   11 o <n 
R =»oio 

.0 1 1 

R + R* = 

R + R = 

fi 1 1*1 
1 1 1 
1 1 1 

fl 1 0) 
1 1 1 
0 1 1, 

R + R = oil 

) 

Fig. 

Strong subcomponents of a graph can be recognized. 

'')     with the matrices 

0 1 1 

For instance, consider 

G = 

0 ft) 1 1 
1 \ 1 0 1 
2 
3 
t, 

5 ( 

0 1 2 3 «i 5 
0 0 0^1 
0 0 0 

0 0 0 10 0 
0 0 0 0 10 
0 0 10 0 0 
0 0 0 0 1 0 / 

111] 1   0^ 
111] I   1   0 

and R = 0   0   1 
0   0  1 

t   1   0 
1   0 

0   0  1 t   1   0 
0   0   1 1 1 1 

y 

Now if P. is reachable from .P\ , then r. . ~  1; if p. is reachable from P'. then 
J ■' i'      ij   '    i J 

r.. = r,. "  1. Hence the unit elements of the product R«R represent mutually 
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reachable pairs of points which are therefore members of some strong subcomponent 

of the graph. For our illustration of Fig. 5  , we have 

R.R* = 

n 1111 <p 
111110 
0 0 1110 
0 0 1110 
0 0 

1 1 I UJ 

1 1 1 o! 
10 0 1 1 1 1] 

^110 0 0 0^ 
110 0 0 0 
111111 
111111 

0  0  0  0  0 lj 5 

01231.5 

0 (\ l lo o o!o"l 
i_l'0_o_oJoJ_ 
ö~ö]T i r lo r 
o of 
o o! 

ii i ii» i 

Si   1   1 io I 

0   OiO   0   0 
I F> 

Here the dashed lines represent a decomposition of the matrix into the strong 

subcomponents of the graph, namely point sets {P'o, P^), 0*2,^3 i^i,}» an<J tP^/. 

Note that a single point is always a strong subcomponent of itself (why?). The 

complete decomposition would be characterized by 

i/o/l> : 

tt^Pspi, 

<Ps> 

G=(r0l -{!) 

G = (l)    R - (l) 

Y?e can construct a new directed graph, called the condensed graph, that, 

displays the relationships of the strong components (see Fig.  6 )• The con- 

densed graph will have points corresponding to the strong components, say Qj, 

Q2, and Q3 for {PoPj}, (P2»P3>Pi,} and {P5}. If at least one line connects a 

point of one component with a point of another, then there will be a line in 

the same direction connecting the corresponding points in the condensed graph. 

For our illustration, from the ful.L-si?.ed G above (or see Fig.  5 ) ve will 
■v, 21 

have a line VQI connecting QQ and Qj and a line connecting Q? ana Qj (sec 

Fig. 6 ). For our condensed graph,ve now have 

G   «      J 

2 

0   1 2 
0 1 o") 
0   0 0 
0 1 oj 

0   1   2 
0   Al o*\ 

R c   1     010 
2    loll) 

R+R 
(\   1   0") 

1   1   1 
0  1   1 
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Of course, the condensed graph is not strongly connected (why?) and for our 

example is not »-/enV.ly connected. Another very important question can be answered 

from our.graph from which all other points can be reached. Clearly if we find 

such a minimum set for the condensed graph, then we have answered the question 

for the original graph, since a point chosen for the condensed-graph case can be 

replaced by any one of the points of the strong component it represents. To find 

the minimum set for the condensed graph, we chose vhose points which correspond 

to columns with a single unit in the R matrix. We know, of course, that such 

columns (with a single unit) must exist in the condensed graph (why?). This 

single unit simply means that the point is reachable from itself. All remaining 

columns (with more than one unit) will then correspond to points reachable from 

the other points. For instance, for our example column zero and column tvo of 

the condensed P. have single units, corresponding to pofnts Qo and Q2 (see Fig. 6). 

Hence a minimum set of points for the original graph (see Fig.  5 ) could be 

P\  (from QQ) and ,?5 (from Q2) and all points of the graph can be reached from one 

of these. Such a minimum set of points is called a point basis for the graph. 

Application of Arithmetic Matrices to Graph Theory. Up to now in our treat- 

ment of graph theory, we have been utilizing only Boolean matrices with Boolean, 

or logical, operations. In this paragraph, we will turn to the use of arithmetic 

matrices using ordinary arithmetic operations in matrix multiplication. We will, 

however, again start with the incidence matrix. Our first observation is that 

the value of an element g.  of G , the n  arithmetic power of the incidence 

matrix G, is the number of paths from ,F. to F of length n (where by the length 

of a path we mean the number of lines or steps required). For instance, for the 

graph of Fig. "/ 

r 

""I 
01110 
00011 
11010 
00001 
0 ! 0 0 0; 

G2 = 

110 2 2 
0 10 0 1 
0 112 1 
0 10 0 0 
0 0 0 1 I 

G3 = 

0 3 1 2 2] 
0 1 0 1 1 
1 3 0 2 3 
0 0 0 1 1 
u 1 0 0 lj 

G1- = 
0 10 12 
0 «t 1 i, t, 

0 10 0 1 
0 10 11 

- 10 



For G2, note, for example, that there are two paths of length 2 from ?Q  to F3, 

one through ft,  and the other through P'2. For G3, note that there are three paths 

of length 3 frora/o toJ?\  (namely PoP3P«,Pi, F'oP'iPi.Pi, and ^'o^PoF'l), and so forth. 

For G1"  there are five paths of length U  from Fj to ?i,  (namely PoI*2pOir3Plt > f f fa\",\\ 

fföv'thA*  P'ofr
l.P»l
Flp'.» and I^Wl^O- 

If we form the matrix T = G^ 0 then 

*« r «il eji +6i2 6j2 + '•• +eingjn 

Hence if both g.. and g . are units, a unit will he contributed to the sum com- 

posing t... Elements g.. and g , both being units means that lines go from both 

p.  and,P to P. . Hence the value of t. is the number of points that are 

insertions for lines having origins at both JP. and P".. For diagonal elements of 

T, namely t.., the value is the number of points that are insertions for lines 

having P\ as origin, i.e. the number of lines emanating from P*.. For the 

illustration of Fig.  7 , we have 

T = GVG = X 
0 1110 
0 1)01 1 
1 1 0 1 o| X 
0 0 0 0 1 
01000! I 

0 0 10 0 
10 10 1 
10 0 0 0 
1 1 1 0 o' 
0 10 10 

(31 20  A 
1   2 1   1   0 
2  1 3   0  1 
0  1 0  1   0 
10 10 1 

Thus, for example, there are three lines emanating from (having their origins at) 

Po» two from^j, three from P?> &n^  one each from ^3 and p'^. 13y similar reason- 

ing, we can see that for matrix II - G XG, the value of h. is the number of 

points that are origins for lines having insertions at b-th P". and ,P , and that 

value of the diagonal elements h.. is the number of lines converging on P.. For 

our illustration, 

1110 10 
t .      13 12 0 

H = G )(G= | 0 1 1 1 0 
0 2 13 1 
0 0 0 1 ?. I 

'!?hus 1*3, for instance, is the point of insertion of three liner., anc so forth, 
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Finally, lei us observe that we can easily construct a. distance matrix D 

for a graph by observation of the sequence of Boolean matrices G, G , G3, 

... G . The value of d. is found hy examining the sequence of i. ii_J elements 
* J 

of the matrix sequence; the exponent of the matrix in which this element first- 

becomes a unit is the value of d... We must, however, use the conventions that 
    ij       ' 

fa point and itself the distanceVbetweerr is 0, and between two points for which 

there is no connecting path the distance is ». For instance, for Fig. 8 we 

have 

0 
G = 

10 0 1 
G3 _ 1 0 1 0 0 

0 0 10 
,0000 

ro i o o7 
G«- = 

The distance matrix becomes 
r0 1 2 3^ 
2 0 12 
12 0 1 
00 CO 00 "j 
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